We help the world growing since 1983

Graphite Crucibles Gold and Silver Melting Kit

Short Description:

Graphite Crucible is a type of advanced high-temperature crucible made from high-purity silicon carbide material, manufactured through an isostatic pressing process and high-temperature treatment. This crucible has become an essential tool in fields such as metal smelting and ceramic manufacturing due to its exceptional physical and chemical properties.


Product Detail

FAQ

Product Tags

Crucible Quality

Withstands Myriad Smelts

PRODUCT FEATURES

Superior Thermal Conductivity

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

 

Superior Thermal Conductivity
Extreme Temperature Resistance

Extreme Temperature Resistance

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

Durable Corrosion Resistance

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

Durable Corrosion Resistance

TECHNICAL SPECIFICATIONS

 

Graphite / % 41.49
SiC / % 45.16
B/C / % 4.85
Al₂O₃ / % 8.50
Bulk density / g·cm⁻³ 2.20
Apparent porosity / % 10.8
Crushing strength/ MPa (25℃) 28.4
Modulus of rupture/ MPa (25℃) 9.5
Fire resistance temperature/ ℃ >1680
Thermal shock resistance / Times 100

 

Shape/Form A (mm) B (mm) C (mm) D (mm) E x F max (mm) G x H (mm)
A 650 255 200 200 200x255 Upon request
A 1050 440 360 170 380x440 Upon request
B 1050 440 360 220 ⌀380 Upon request
B 1050 440 360 245 ⌀440 Upon request
A 1500 520 430 240 400x520 Upon request
B 1500 520 430 240 ⌀400 Upon request

PROCESS FLOW

Precision Formulation
Isostatic Pressing
High-Temperature Sintering
Surface Enhancement
Rigorous Quality Inspection
Safety Packaging

1. Precision Formulation

High-purity graphite + premium silicon carbide + proprietary binding agent.

.

2.Isostatic Pressing

Density up to 2.2g/cm³ | Wall thickness tolerance ±0.3m

.

3.High-Temperature Sintering

SiC particle recrystallization forming 3D network structure

.

4.  Surface Enhancement

Anti-oxidation coating → 3× improved corrosion resistance

.

5. Rigorous Quality Inspection

Unique tracking code for full lifecycle traceability

.

6. Safety Packaging

Shock-absorbent layer + Moisture barrier + Reinforced casing

.

PRODUCT APPLICATION

GAS MELTING FURNACE

Gas Melting Furnace

Induction melting furnace

Induction Melting Furnace

Resistance furnace

Resistance Melting Furnace

WHY CHOOSE US

Material:

Our Cylindrical Crucible is crafted from isostatically pressed silicon carbide graphite, a material that offers exceptional high-temperature resistance and excellent thermal conductivity, making it an essential tool for industrial smelting applications.

  1. Silicon Carbide (SiC): Silicon carbide is known for its extreme hardness and excellent resistance to wear and corrosion. It can withstand high-temperature chemical reactions, offering superior stability even under thermal stress, which reduces the risk of cracking during sudden temperature changes.
  2. Natural Graphite: Natural graphite delivers exceptional thermal conductivity, ensuring rapid and uniform heat distribution throughout the crucible. Unlike traditional clay-based graphite crucibles, our cylindrical crucible uses high-purity natural graphite, which improves heat transfer efficiency and reduces energy consumption.
  3. Isostatic Pressing Technology: The crucible is formed using advanced isostatic pressing, ensuring uniform density with no internal or external defects. This technology enhances the strength and crack resistance of the crucible, extending its durability in high-temperature environments.

Performance:

  1. Superior Thermal Conductivity: The Cylindrical Crucible is made from high thermal conductivity materials that allow for rapid and even heat distribution. This enhances the efficiency of the smelting process while reducing energy consumption. Compared to conventional crucibles, thermal conductivity is improved by 15%-20%, leading to significant fuel savings and faster production cycles.
  2. Excellent Corrosion Resistance: Our silicon carbide graphite crucibles are highly resistant to the corrosive effects of molten metals and chemicals, ensuring the stability and longevity of the crucible during prolonged use. This makes them ideal for smelting aluminum, copper, and various metal alloys, reducing maintenance and replacement frequency.
  3. Extended Service Life: With its high-density and high-strength structure, the lifespan of our cylindrical crucible is 2 to 5 times longer than traditional clay graphite crucibles. The superior resistance to cracking and wear extends operational life, lowering downtime and replacement costs.
  4. High Oxidation Resistance: A specially formulated material composition effectively prevents oxidation of the graphite, minimizing degradation at high temperatures and further extending the crucible's life.
  5. Superior Mechanical Strength: Thanks to the isostatic pressing process, the crucible boasts exceptional mechanical strength, retaining its shape and durability in high-temperature environments. This makes it ideal for smelting processes requiring high pressure and mechanical stability.

Product Advantages:

  • Material Benefits: The use of natural graphite and silicon carbide ensures high thermal conductivity and corrosion resistance, providing lasting performance in harsh, high-temperature environments.
  • High-Density Structure: Isostatic pressing technology eliminates internal voids and cracks, significantly improving the crucible’s durability and strength during extended use.
  • High-Temperature Stability: Capable of withstanding temperatures up to 1700°C, this crucible is ideal for various smelting and casting processes involving metals and alloys.
  • Energy Efficiency: Its superior heat transfer properties reduce fuel consumption, while the environmentally friendly material minimizes pollution and waste.

Choosing our high-performance Cylindrical Crucible will not only enhance your smelting efficiency but also reduce energy consumption, extend equipment lifespan, and lower maintenance costs, ultimately improving production efficiency.

  1. Thermal Conductivity
    • Graphite crucibles exhibit excellent thermal conductivity, ensuring uniform heat distribution. This property reduces hot spots and ensures even melting, making them highly efficient for metals like gold, copper, and aluminum.
    • Thermal conductivity can reach values of up to 100 W/m·K, which is superior compared to traditional refractory materials.
  2. High-Temperature Resistance
    • Graphite crucibles are capable of withstanding extremely high temperatures, up to 1700°C in inert atmospheres or vacuum conditions. This allows them to maintain structural integrity in demanding environments without degrading.
    • These crucibles remain stable and resistant to deformation under intense heat.
  3. Low Coefficient of Thermal Expansion
    • Graphite materials have a low coefficient of thermal expansion (as low as 4.9 x 10^-6 /°C), reducing the risk of cracking or thermal shock when exposed to rapid temperature changes.
    • This feature makes graphite crucibles particularly suitable for processes that involve repeated heating and cooling cycles.
  4. Corrosion Resistance
    • Graphite is chemically inert and offers high resistance to most acids, alkalis, and other corrosive agents, especially in reducing or neutral atmospheres. This makes graphite crucibles ideal for aggressive chemical environments in metal casting or refining.
    • The material's resistance to oxidation can be further enhanced by coatings or special treatments, ensuring prolonged service life.
  5. Electrical Conductivity
    • As a good conductor of electricity, graphite materials are suitable for induction heating applications. The high electrical conductivity enables efficient coupling with induction systems, ensuring rapid and uniform heating.
    • This property is particularly useful in processes requiring induction heater crucibles, enhancing operational efficiency in industries like foundry work or metallurgy.
  6. Purity and Material Composition
    • High-purity carbon graphite crucibles (up to 99.9% purity) are essential for applications where metal contamination must be avoided, such as in the production of precious metals or advanced ceramics.
    • Silicon carbide graphite crucibles combine the properties of both graphite and silicon carbide, offering enhanced mechanical strength, oxidation resistance, and a higher melting point, suitable for extreme operating conditions.
  7. Durability and Longevity
    • Isostatically pressed graphite crucibles are manufactured to have uniform density and strength, resulting in longer lifespans and reduced material failure during high-temperature operations. These crucibles are also more resistant to erosion and mechanical damage.
  8. Chemical Composition:

    • Carbon (C): 20-30%
    • Silicon Carbide (SiC): 50-60%
    • Alumina (Al2O3): 3-5%
    • Others: 3-5%
  9. Customizable Sizes and Shapes
    • Our graphite crucibles are available in a wide variety of sizes and configurations. From small graphite crucibles (suitable for lab-scale metal testing) to large crucibles designed for industrial-scale smelting, we offer tailored solutions for every application.
    • Graphite-lined crucibles and crucibles with pour spouts can also be customized to specific casting requirements, ensuring convenience and efficiency in metal handling.

FAQS

Q1: What are the advantages of silicon carbide graphite crucibles compared to traditional graphite crucibles?

✅ Higher Temperature Resistance: Can withstand 1800°C long-term and 2200°C short-term (vs. ≤1600°C for graphite).
✅ Longer Lifespan: 5x better thermal shock resistance, 3-5x longer average service life.
✅ Zero Contamination: No carbon penetration, ensuring molten metal purity.

Q2: Which metals can be melted in these crucibles?
▸ Common Metals: Aluminum, copper, zinc, gold, silver, etc.
▸ Reactive Metals: Lithium, sodium, calcium (requires Si₃N₄ coating).
▸ Refractory Metals: Tungsten, molybdenum, titanium (requires vacuum/inert gas).

Q3: Do new crucibles require pre-treatment before use?
Mandatory Baking: Slowly heat to 300°C → hold for 2 hours (removes residual moisture).
First Melt Recommendation: Melt a batch of scrap material first (forms a protective layer).

Q4: How to prevent crucible cracking?

Never charge cold material into a hot crucible (max ΔT < 400°C).

Cooling rate after melting < 200°C/hour.

Use dedicated crucible tongs (avoid mechanical impact).

Q5: How to prevent crucible cracking?

Never charge cold material into a hot crucible (max ΔT < 400°C).

Cooling rate after melting < 200°C/hour.

Use dedicated crucible tongs (avoid mechanical impact).

Q6: What is the minimum order quantity (MOQ)?

Standard Models: 1 piece (samples available).

Custom Designs: 10 pieces (CAD drawings required).

Q7: What is the lead time?
⏳ In-Stock Items: Ships within 48 hours.
⏳ Custom Orders: 15-25 days for production and 20 days for mould.

Q8: How to determine if a crucible has failed?

Cracks > 5mm on inner wall.

Metal penetration depth > 2mm.

Deformation > 3% (measure outer diameter change).

Q9: Do you provide melting process guidance?

Heating curves for different metals.

Inert gas flow rate calculator.

Slag removal video tutorials.


  • Previous:
  • Next:

  • Related Products